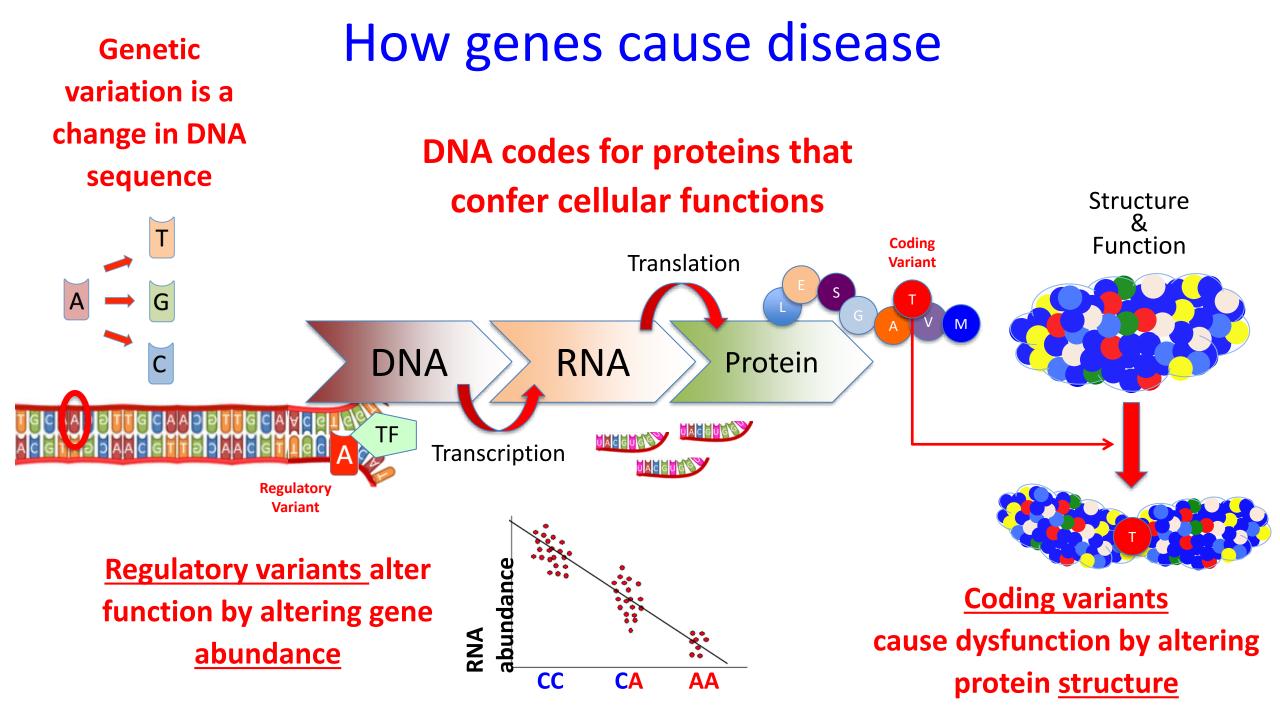

Update on Severe Asthma 2023

The Genetics of Severe Asthma

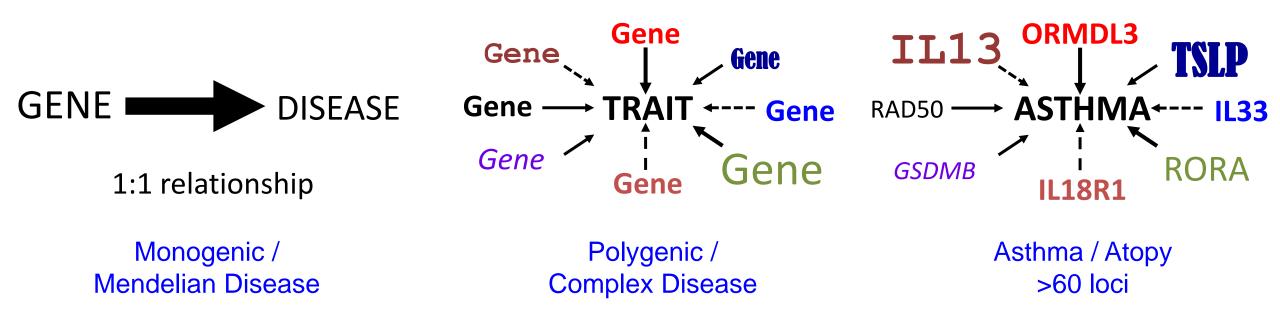
Benjamin A. Raby, MD, MPH

Leila and Irving Perlmutter Professor of Pediatrics | Harvard Medical School Chief, Division of Pulmonary Medicine | Boston Children's Hospital Director, Pulmonary Genetics Center | Brigham and Women's Hospital

Declaration of Financial Interest


• Genetics Section Editor for UpToDate, Inc.

• Spouse consultant for CRO as blinded interpreter of clinical trial data in hematology (unrelated)

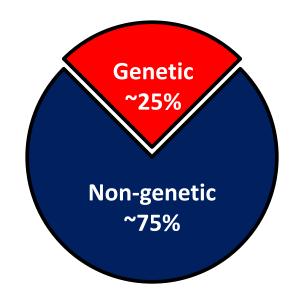

Outline

- How genes cause disease?
- Is Severe Asthma Genetic?
- Common genetic variation in severe asthma
- Rare genetic variation in severe asthma
- Clinical approach to the genetics of severe asthma

How genes cause disease

Rare Monogenic Disease vs. Common Polygenic Disease

Is Severe Asthma Genetic?

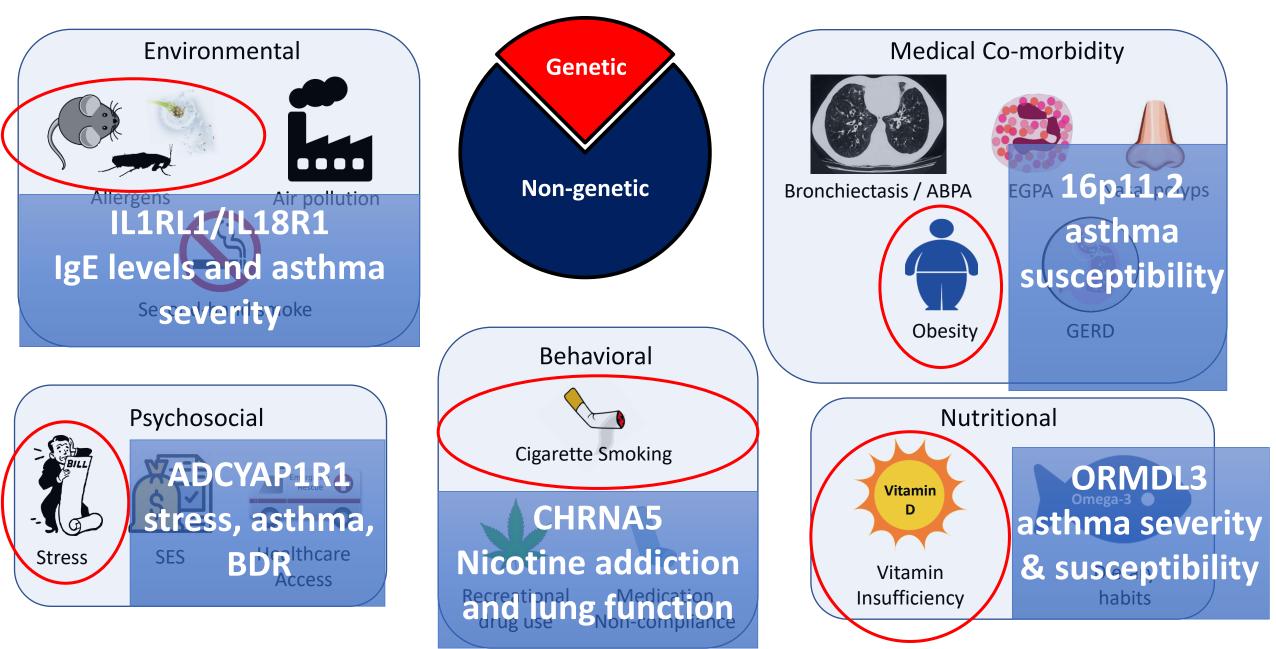

The heritability of severe asthma

Danish Twin Registry:¹ 256 twin pairs

- heritability of symptom severity 24%
- Medication-based score: 2%

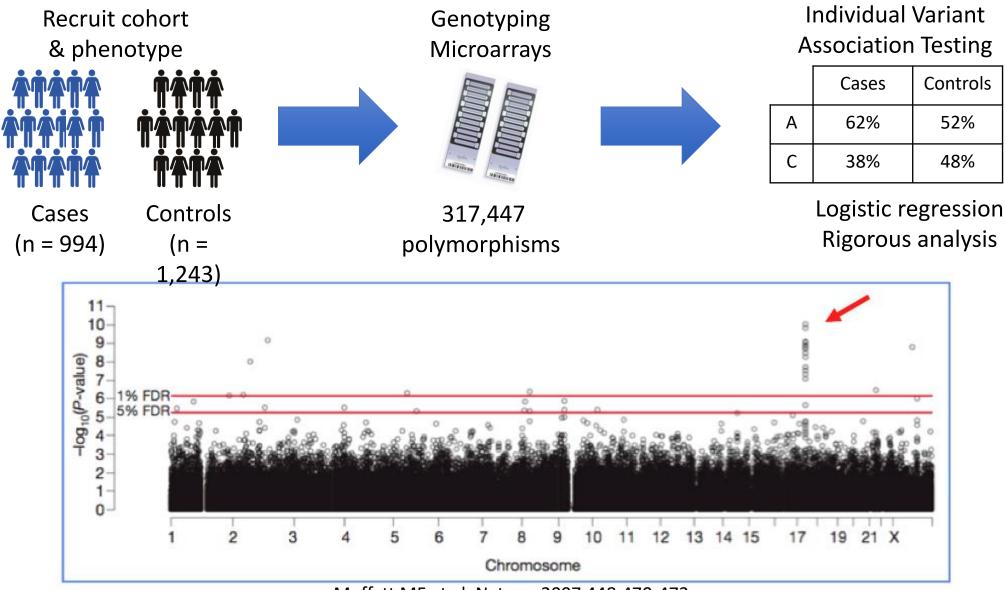
EGEA Mixed case-control / family-based study:² 944 subjects

- strong within-family correlation for symptom severity [ICC = 0.23]
- Not for inhaled corticosteroids [ICC = -0.15].

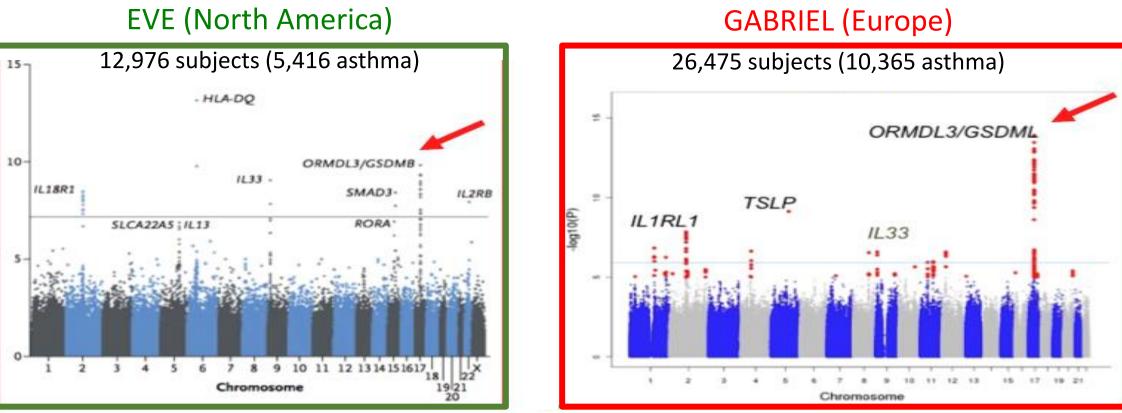


CAMP Whole Genome Prediction study:³ 832 asthmatics

- Heritability > 50% observed for IgE levels (r² = 0.53), FEV1 (0.83); BDR (0.67)
- Not observed for steroid responsiveness, airways hyper-responsiveness, or eosinophil count


Thomsen SF et al. Clin Respir J. 2012; 6:228-37. (PMID: 22081985)
 Pin I et al. Am J Respir Crit Care Med. 2002; 165:185-9. (PMID: 11790652)
 McGeachie MJ et al. Immun Inflamm Dis. 2016; 4:487-496. (PMID: 27980782)

The non-genetic contributors to severe asthma


Common variants

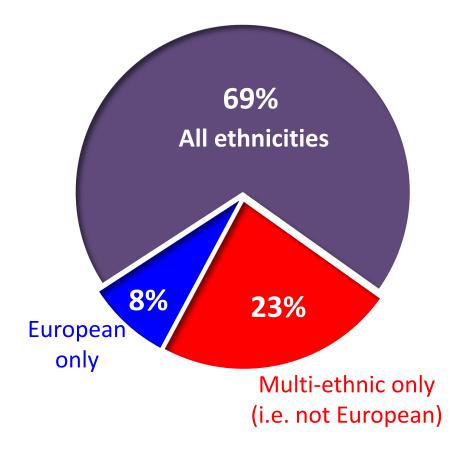
Genome-Wide Association Studies

Moffatt MF et al. Nature. 2007 448:470-473.

Asthma GWAS

Torgenson et al. Nature Genetics 2011

Moffatt et al. New Engl J Med 2010


1.2x10 ⁻¹⁴	17q21 (ORMDL3/GSDML)	6.4x10 ⁻²³
1.4x10 ⁻⁸	IL1RL1/IL18R1 (chr. 2)	3.4x10 ⁻⁹
7.3x10 ⁻¹⁰	TSLP (chr. 5)	7.5 ⁻⁸
2.5x10 ⁻⁷	IL33 (chr. 9)	9.2x10 ⁻¹⁰

Most consistently replicated asthma genes

Antigen presentation	HLA-B, HLA-DPA1, HLA-DQA1, HLA-DQB1, M	ICA		
Cell-cell adhesion	AIF1, CAMK4, CCR7, ETS1, LPP, NDFIP1			
Cytokines, cytokine signaling	IL13, IL18R1, IL1RL2, IL33, BCL6, FASLG, GATA3, IL6R, STAT6, TNFSF18, TNFSF4, TSLP			
T cell development and activation	RORA, RORC, IKZF4, WDR36, BACH2			
Activation of NK cells	NCR3			
Sphingolipid synthesis, ER stress	ORMDL3			
TGF-beta signaling	SMAD3 (Dominant-negative inhibitor of TGF beta) LRRC32 (Regulator of TGF-beta bioavailability) WNT11 (TGF-beta mediated actin expression) GSDMB (influences TGF-beta expression)			
Miscellaneous Functions				
Synthesis-Dependent Strand Annealing	RAD50, RAD51B, RMI2	% Non-coding		
Cytoskeletal organization	DIAPH1			
Endocytosis	AP5B1			
Hormone transduction	ITPR3	9%		
IgE receptor	FCER1G			
Mitochondrial protein / oxphos	NDUFS2			
Mycobacterial immunity	TLR1			
PD-1 signaling	CD247			
Amino acid metabolism	SUOX	91		
Anti-transcriptional repression		0/		
	SMARCE1	%		
D-2-hydroxyglutarate metabolism	D2HGDH	%		

Similar genetic architecture across ancestry groups

Shared Genetic Loci

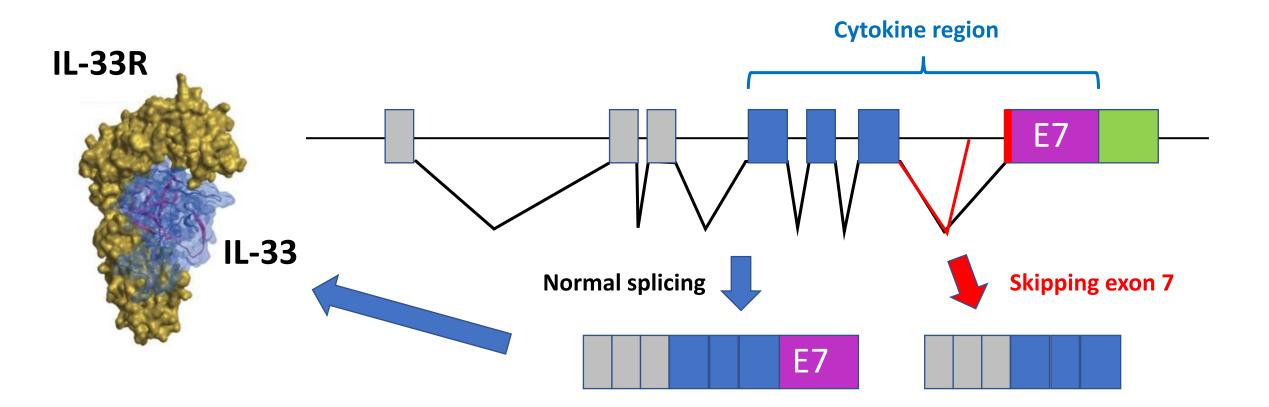
Demenais et al. Nat Genet 2018

Rare variants in IL33 protect from asthma

Eosinophil level

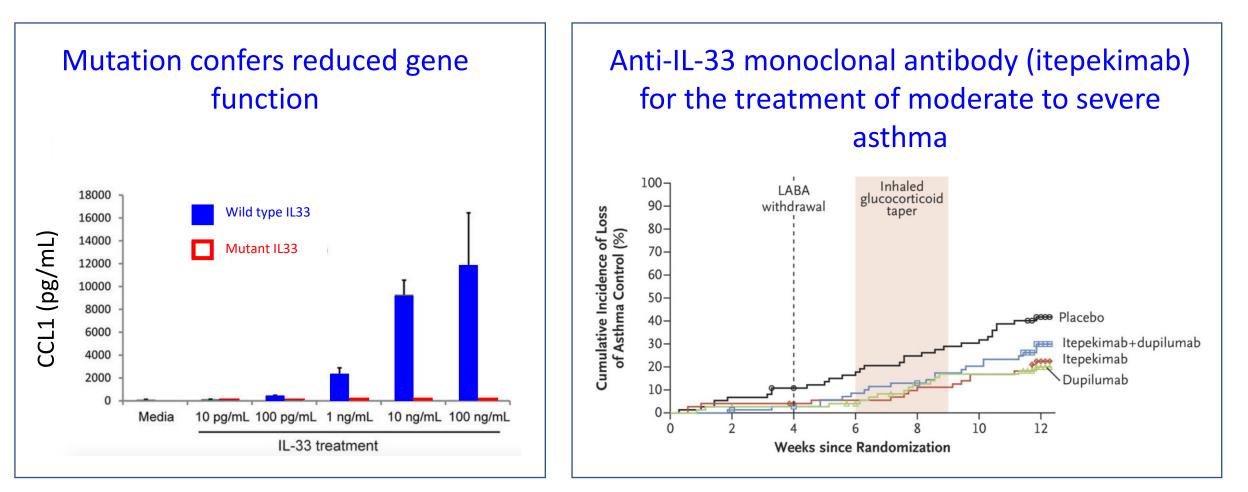
Cohort	Effect Estimate	p-value	N Individuals
Iceland	-0.21 (-0.27, -0.16)	2.5 x 10 ⁻¹⁶	103,104
Netherlands	-0.48 (-0.93, -0.03)	0.04	1,370

Asthma


Cohort	Odds Ratio	p-value	N Cases	N Controls
Iceland	0.36 (0.21, 0.61)	1.2 x 10 ⁻⁴	3,512	298,026
Netherlands	1.08 (0.36, 3.21)	0.89	351	2,830
Germany	0.89 (0.14, 5.48)	0.90	284	252
Denmark-1	0.72 (0.29, 1.79)	0.48	1,121	1,004
Denmark-2	0.24 (0.06,0.94)	0.04	1,197	865
Combined	0.47 (0.32, 0.70)	1.8 x 10 ⁻⁴	6,465	302,977

A rare variant .40-0.70% frequency in general population

Associated with reduced eosinophil levels


Associated with a reduced asthma risk by at ~ 50% (95% CI 32 – 70%)

Asthma-protective IL33 loss-of-function variant

Smith et al. PLoS Genet. 2017; 13:e1006659

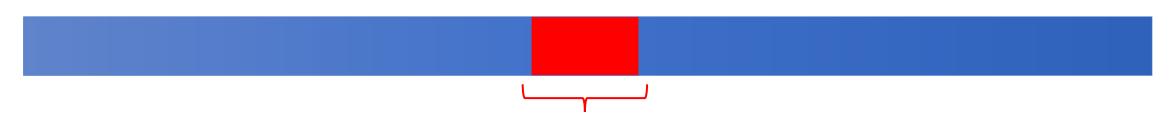
Asthma-protective IL33 loss-of-function variant

Smith et al. PLoS Genet. 2017; 13:e1006659

Wechsler et al. NEJM 2021; 385:1656-1668

Common genetic variation in severe asthma

Challenges of genetic studies of severe asthma


Variability in Phenotype Definition

	ATS/ERS	GINA	BTS	SARP	EPR-3 (kids)	PSACI	
High dose ICS alone				Major Criteria			
2 nd controller medication				Minor Criteria		This + one of the following:	
Step down loss of control				Minor Criteria			
Systemic steroids	>50% of year		Continuous / frequent	Major Criteria >50% of year			
Control of comorbidities							
Airway obstruction				Minor Criteria	Age ≥ 5		
Urgent care visits				Minor Criteria			
Near fatal asthma				Minor Criteria			
Rescue BD use				Minor Criteria			
Symptoms					All kids		

- 1. Complicates between study comparisons
- 2. Complicates combining studies (meta-analysis)
- 3. Misclassification reduces power

Challenges of genetic studies of severe asthma

Reduced Sample Size

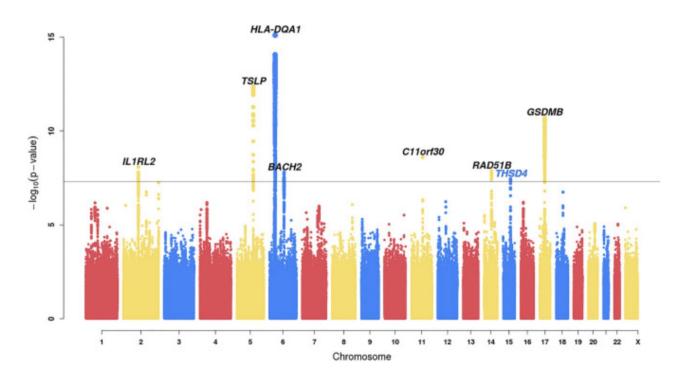
At best, 10% of asthma is severe


Unless study is enriched for severe disease, focus on this population can result in a 90% reduction in case sample size

Could translate to a 70% reduction in power

GWAS of severe asthma

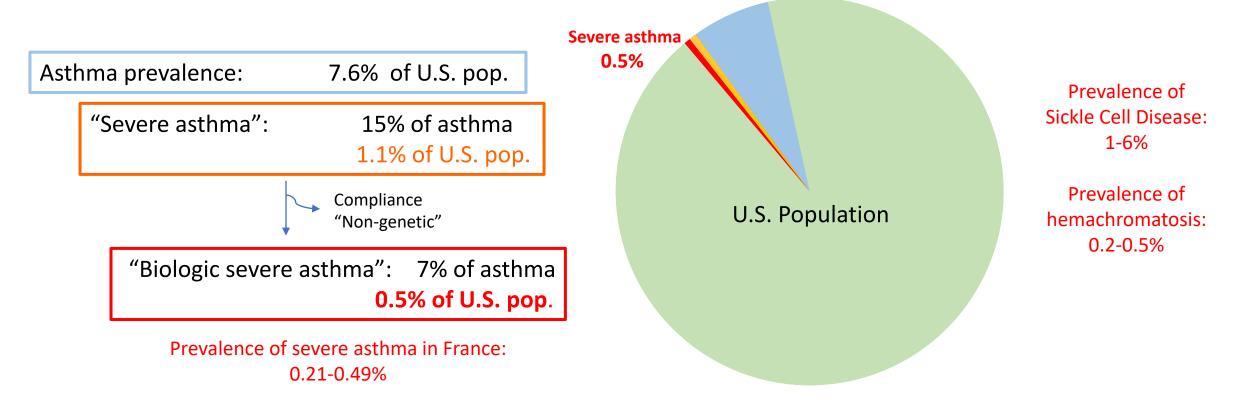
Study Li et al.	Definition of severity "severe or	Sampl size (severe control	RAD50II 13	Variant rs2244012	Effe estim OR (95 1.64 (1.3	ate % CI)	Comments No SNP achieved genome-wide statistical significance.
Li et al.	difficult-to-treat"		HLADR/DQ	rs1063355	0.68 (0.5	8-0.81)	rs2244012 liked to severity associated identified in Shrine et al
Wan et al.	GINA step 3-5	933 / 33 231 / 13	-	rs4794820	0.75 (0.6	9-0.83)	Most commonly associated with asthma (including cohorts of mild asthma).
Shrine et al.	BTS stages 3–5 (Moderate – severe)	5135/ 256 5414/ 214		rs10905284 <mark>rs11603634</mark> rs560026225	0.90 (0.8 <mark>1.09 (1.0</mark> 1.12 (1.0	6–1.12)	 24 genes significantly associated with moderate-to-severe asthma, 21 were previously associated with asthma in cohorts with mild disease. MUC5AC association is the sole finding restricted to more severely affected cohorts.
Li et al.	JACI 2010; 125:328-35		Wan et al. Thorax	x. 2012; 67:762-8		S	Shrine et al. Lancet Resp Med. 2019; 7:20-34


Largest GWAS of severe asthma

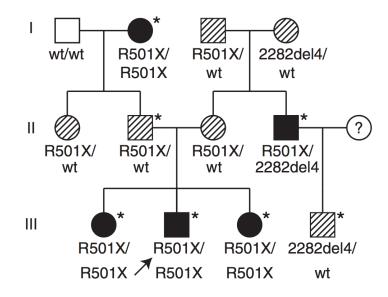
Shrine et al. Lancet Resp Med. 2019; 7:20-34

Genome-wide sequencing study

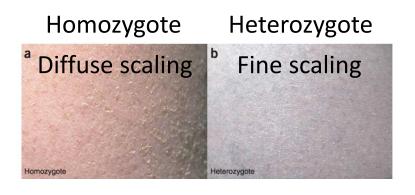
Moderate to severe cases: 3,181 Healthy controls: 3,590

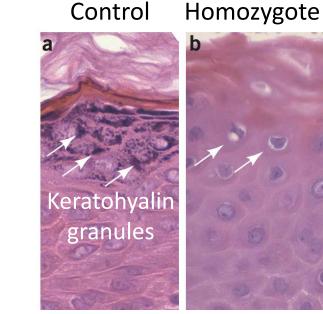


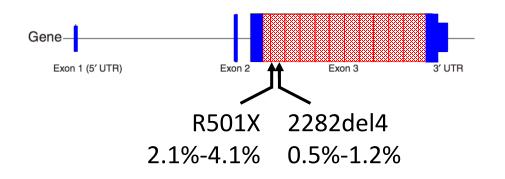
Chang et al. Sci Rep. 2022; 12: 5574.


Rare genetic variation in severe asthma

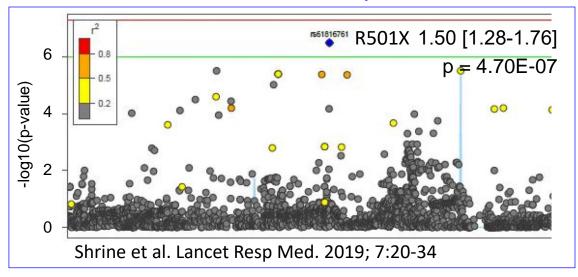
Arguments for rare variants in severe asthma


- 1. Severe disease ≈ extreme phenotype ≈ variants of extreme (severe) effect
- 2. Monogenic disease often initially misdiagnosed as asthma
- 3. The filaggrin story
- 4. Severe asthma could be a rare disease


Filaggrin (FLG), ichthyosis vulgaris and atopic dermatitis



Smith FJD et al. Nat Genet (2006) 38: 337-42.



Filaggrin (FLG) and severe asthma

Asthma Severity GWAS

Monogenic disorders misdiagnosed as severe asthma

Disorder	Genes	Genetic mechanism	Mode of inheritance	Major manifestations	Specific therapy
Cystic Fibrosis	CFTR	Aberrant chloride transport → impaired MCC	AR	Bronchiectasis Pancreatic insufficiency Infertility	Ivacaftor Lumacaftor Tezacaftor
Primary Ciliary Dyskinesia	37 genes	Impaired ciliary assembly → impaired MCC	AR, X-linked	Bronchiectasis Dextrocardia, situs inversus Infertility and ectopic pregnancy	Promote mucociliary clearance
Alpha-1-antitrypsin deficiency	SERPINA1	Neutrophil elastase deficiency → protease and pro-inflammatory activity	AR	Bronchiectasis and emphysema Accelerated lung function decline, abnormal liver function	Enzyme replacement therapy (ERT)
Hypereosinophilic syndrome	FIP1L1- PDGFRA fusion	Tyrosine kinase fusion protein \rightarrow clonal eosinophil proliferation	Somatic mutation	Eosinophilic tissue infiltration, most commonly of the heart, skin, lungs, PNS and CNS	Imatinib Mepolizumab
Hyper-IgE (Job) Syndrome	STAT3 DOCK8 ZNF341 PGM3	Impaired Th17differentiation → dysregulated immune responses	AD AR AR AR	Eczema, retained primary teeth, recurrent Staphylococcal abscesses, recurrent fungal and viral infections, pneumatocoeles	Hematopoietic stem cell transplantation (HSCT)
Icthyosis Vulgaris	FLG	Impairment of epithelial barrier function	AD	Diffuse patches of dry, scaly skin, palmer hyperlinearity and keratosis pilaris, eczema and allergic rhinitis	Skin hydration
Comel-Netherton Syndrome	SPINK5	Loss of epithelial anti-protease activity → inflammation and desquamation	AR	Icthyosis, <mark>eczema</mark> , bamboo hair	None
Adenosine deaminase deficiency	ADA	impaired DNA synthesis and lymphocyte maturation	AR	Lymphopenia, recurrent, opportunistic, and severe infections; rash; growth delay	ERT HSCT Gene therapy

Clinical approach to identify genetic forms of severe asthma

Recognizing genetic disease

• Personal history:

Severe disease Early-onset of disease Atypical / rare symptoms or physical findings (more to come)

• The family history is helpful:

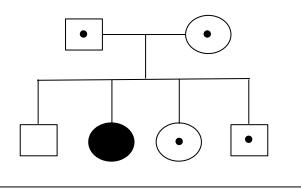
Pattern of Inheritance

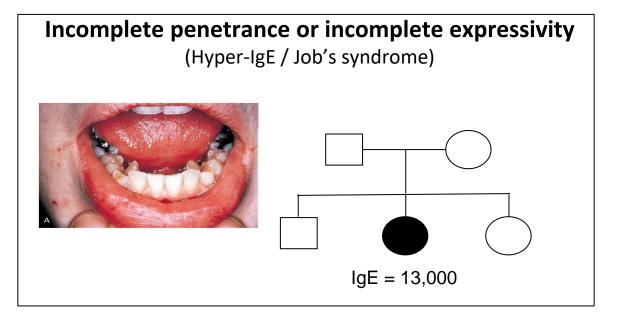
Multigenerational incidence of disease Dominant

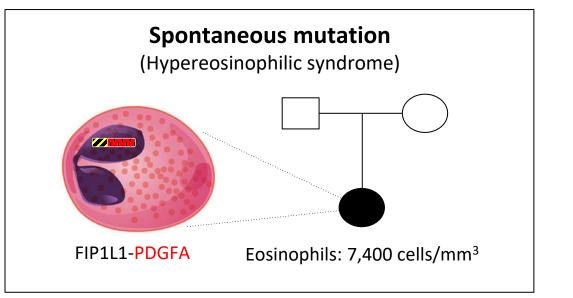
Disease?

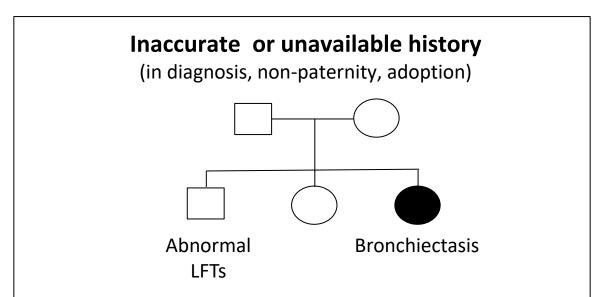
Affected siblings (not parents) Recessive Disease?

Consanguinity


Familial manifestations of disease


Trait	Disorder
Situs Inversus	Primary Ciliary Dyskinesia
Retained teeth	Job Syndrome
Severe eczema	Ichthyosis


A negative family history: very common



(Cystic Fibrosis, Alpha-1 antitrypsin deficiency, primary ciliary dyskinesia)

Gene-focused history, physical, and labs

	History		Physical Examination		Labs
HEENT:	Recurrent otitis	CF	Glue ear	Blood work	Disorder
	Chronic sinusitis PCD Reduced auditory acuity Chronic nasal congestion	Lymphopenia	ADA deficiency		
	Allergic rhinitis	Ichthyosis		Eos	HES
		Hyper-IgE	Retained teeth	LFTs	A1ATD HES
CVS:	Heart failure	HES	Dextrocardia	IgE	Hyper-IgE HES
Abdo:	Pancreatitis	PCD CF	Pectus excavatum (10%) Heterotaxy	Hypogamma	Hyper-IgE ADA deficiency
	Fat soluble vitamin def.	HES	Organomegally	Vitamin Deficiency	CF
Repro:	Infertility	CF / PCD	Bilateral absence of the	Radiology	Disorder
	Ectopic pregnancy		vas deferens	Bronchiectasis	CF
Neuro:	Neuritis	HES	Focal Neurologic Deficits	or Reduced PFTs	PCD A1ATD Immune deficiency
Skin:	Eczema	Hyper-IgE, Ichthyosis	Rash Ichthyosis / Hair	Infiltrates	HES
Infection:	Staphlococcal / fungal	Hyper-IgE		Pneumatocoele	Hyper-IgE
	Opportunistic	ADA deficiency		Heterotaxy	PCD

Corroborative tests

Disorder	Tests	Comments	Genetic testing
Cystic Fibrosis	Sweat chloride test	Diagnostic test	CFTR sequencing
Primary Ciliary Dyskinesia	Nasal Nitric Oxide Nasal EM	Levels < 77ng/dL with high sens / spec Not diagnostic, difficult to obtain Poor sensitivity and specificity	37 gene panel
Alpha-1-antitrypsin deficiency	A1AT levels and SPEP	Diagnostic test	Pi locus genotyping
Hypereosinophilic syndrome	FIP1L1-PDGFRA fusion	Diagnostic test	
Hyper-IgE (Job) Syndrome	None	Clinical Dx	STAT3, DOCK8, ZNF341, PGM3
Icthyosis Vulgaris	None	Dermatologic Dx	FLG
Comel-Netherton Syndrome	None	Dermatologic Dx	SPINK5
Adenosine deaminase deficiency	ADA enzyme levels	More detailed immunologic survey often needed	ADA

Recognizing genetic disease is challenging

- Family history often lacking
- Suspecting rare disease requires vigilance
- Lack of pathognomonic manifestations:
 - Forme Fruste disease late onset, "mild" cystic fibrosis
 - Limited expressivity lack of extra-pulmonary manifestations
- Available exposures for attribution
 - Smoking history
 - Occupational exposures

The importance of genetic counseling

• Pre-test:

- Understanding role of testing in clinical evaluation
- Preparation for VUS and "incidentalisms"
- Determine the patient-specific appropriateness of test
- Consenting process

• Post-test:

- Result reporting and interpretation
- Review of result implications
- Role of genetic determinism
- Family counseling
- Reproductive counseling

BWH Pulmonary Genetics Center

- We are happy to provide you with genetic counseling and diagnostic testing services for your patients
- Email me with questions:
 - braby@bwh.harvard.edu
 - <u>Benjamin.Raby@childrens.harvard.edu</u>

Online resources

- GeneTests:
 - Clinical resource for genetic testing, including:
 - a laboratory directory of over 600 labs offering testing;
 - a Clinic Directory of over 1000 international genetics clinics
 - GeneReviews summaries of diseases and genes
 - www.genetests.org
- OMIM: Online Mendelian Inheritance of Man
 - Annotated catalog of disease-associated genes and genetic traits
 - omim.org
- Disease Foundations:

Summary

- Recognizing genetic forms of severe asthma is very important
 - For the patient (treatment implications)
 - Potentially for their family
- Take a good family history
 - But family history is not the end all and be all!
- Look for unusual phenotype, early presentation
- Early referral to specialist, particularly with genetic counseling, is advised, often prior to sequencing.
- Most "severe asthma" susceptibility variants are "asthma" susceptibility variants. More work is needed to understand their potential clinical utility.