

Clearing the Air: Insights and Controversies in the Asthma Guidelines

Justin D Salciccioli Asthma Research Fellow Pulmonary and Critical Care Medicine

BWH Asthma Research Center | Confidential—do not copy or distribute

None

Redefining Reversibility Updated criteria for bronchodilator response

Regulatory Roadblocks GINA, Symbicort, and the FDA

Rapid Relief Patient preferences for reliever therapies

Respiratory Responsibility The global impact of treatment decisions

Summary and Questions

Guidelines and recommendations

ATS/ERS (2022)

NAEPP (2020)

U.S. Department of Health and Human Services National Institutes of Health

National Heart, Lung, and Blood Institute

BTS/SIGN (2019)

Redefining Reversibility Updates to Bronchodilator Response

ATS/ERS lung function testing 2022

Topics Covered Reference equations

Normal range

Bronchodilator response

Severity

ERS/ATS technical standard on interpretive strategies for routine lung function tests

Global Lung Function Initiative

Reference equations for spirometry

Stanojevic 2022 ERJ

'Bronchodilator response' Significant change

2005 BD+

>= 12% & 200mL in FEV1 or FVC

2022 BD+

> 10% of predicted FEV1 or FVC

Compares pre- & post- bronchodilator results

Minimizes sex and height difference in BDR

Spirometry		Pre Bronchodilator								Post Bronchodilator				
		FVC A FEV1 A	Spiro	metry Gra	ding					FVC A FEV1 A				
		Actual	Pred	% Pred	Lower	Upper	Z-Score			Actual	Z-Score	% Pred	% Che	BDR
FEV ₁	L	1.98	4.47	44	3.54	5.36	-4.20	Α	s	2.26	-3.76	51	14	6
FVC	L	5.08	5.60	91	4.45	6.76	-0.74	Ν		5.78	0.26	103	14	(13)
FEV ₁ / FVC	%	39	80	49	70	89	-4.77	Α	s	39	-4.77	49	0	\smile
FEF25-75 [ISO]	L/s	0.58	4.26	14	2.47	6.54				0.79		19	36	
PEFR	L/s	6.51	10.62	61	8.16	13.08				7.51		71	15	
FET	S	17.51	0.00		6.00	0.00				16.85			-4	

Bronchodilator testing Implications of changing definitions

Asthma

Asthma vs. COPD

	Asthma vs. COPD					
BDR Definition	AUC (95% CI)	Sensitivity, Specificity				
$\begin{array}{l} \Delta FEV_1 \text{ or } \Delta FVC \geq 12\% \text{ and} \\ \geq 200 \text{ ml} \\ \Delta FEV_1 \geq 12\% \text{ and } \geq 200 \text{ ml} \\ \Delta FVC \geq 12\% \text{ and } \geq 200 \text{ ml} \\ \Delta FEV_1 \geq 15\% \text{ and } \geq 400 \text{ ml} \\ \Delta FEV_1 \geq 15\% \text{ and } \geq 400 \text{ ml} \\ \Delta FEV_1 > 10\% \text{ pred} \\ \Delta FEV_1 > 10\% \text{ pred} \\ \Delta FEV_1 \text{ or } \Delta FVC > 10\% \text{ pred} \end{array}$	0.597 (0.572, 0.622) 0.659 (0.629, 0.690) 0.592 (0.562, 0.622) 0.727 (0.652, 0.803) 0.571 (0.555, 0.586) 0.578 (0.562, 0.593) 0.505 (0.490, 0.521)	0.55, 0.30 0.58, 0.21 0.42, 0.43 0.80, 0.07 0.15, 0.92 0.09, 0.86 0.18, 0.82				

BDR alone fails to discriminate asthma vs. COPD

- Favor judgment for BDR interpretation in the context of clinical presentation
- BDR as a 'treatable trait' of small airway disease?

Unpublished BWH Asthma Research Center N = 2465 Beasley et al., 2024 AJRCCM NOVELTY Cohort N = 6788

Redefining Reversibility 10% of predicted

Regulatory Roadblocks GINA, Symbicort, and the FDA

Rapid Relief Patient preferences for reliever therapies

Respiratory Responsibility The global impact of treatment decisions

Summary and Questions

Regulatory Roadblocks GINA, Symbicort, and the FDA

SMART reduces exacerbations

Compared to Best Practice

SMART therapy with ICS-formoterol reduces severe exacerbations.

- Clinical trial and observational studies
- > 30k patients

Compared to SABA or LABA

Rabe 2006 Lancet

GINA 2022, Box 3-5A

© Global Initiative for Asthma, www.ginasthma.org

GINA summary

ICS-formoterol at all Steps

The management of asthma got easier:

- Step 1 2: Low-dose ICS-formoterol <u>as</u> <u>needed</u>
- Step 3: Low-dose ICS-formoterol
- Step 4: <u>Medium-dose</u> ICS-formoterol
- Step 5: <u>Consider high-dose</u> ICS-formoterol

ICS-formoterol

- *1. Symbicort* = budesonide-formoterol
- 2. Dulera = mometasone-formoterol
- 3. (*Fostair* = beclomethasone-formoterol)

	Intermittent Asthma	Manag	ement of Persiste	lividuals Ages 12+ Years			
		CTED 3	STEP 3	STEP 4	STEP 5	STEP 6	
Treatment	STEP 1	STEP 2					
Preferred	PRN SABA	Daily low-dose ICS and PRN SABA or PRN concomitant ICS and SABA	Daily and PRN combination low-dose ICS- formoterol A	Daily and PRN combination medium-dose ICS-formoterol	Daily medium-high dose ICS-LABA + LAMA and PRN SABA ▲	Daily high-dose ICS-LABA + oral systemic corticosteroids + PRN SABA	
Alternative		Daily LTRA* and PRN SABA or Cromolyn,* or Nedocromil,* or Zileuton,* or Theophylline,* and PRN SABA	Daily medium- dose ICS and PRN SABA or Daily low-dose ICS-LABA, or daily low-dose ICS + LAMA, A or daily low-dose ICS + LTRA,* and PRN SABA or Daily low-dose ICS + Theophylline* or Zileuton,* and PRN SABA	Daily medium- dose ICS-LABA or daily medium-dose ICS + LAMA, and PRN SABA or Daily medium- dose ICS + LTRA,* or daily medium- dose ICS + Theophylline,* or daily medium-dose ICS + Zileuton,* and PRN SABA	Daily medium-high dose ICS-LABA or daily high-dose ICS + LTRA,* and PRN SABA		
		Steps 2-4: Conditionall immunotherapy as an a in individuals ≥ 5 years initiation, build up, and	ly recommend the use of adjunct treatment to star of age whose asthma is maintenance phases of	Consider adding Asthma Biologics (e.g., anti-IgE, anti-IL5, anti-IL5R, anti-IL4/IL13)**			

Barriers to implementation

FDA/Regulatory

5.2 Deterioration of Disease and Acute Episodes

SYMBICORT should not be initiated in patients during rapidly deteriorating or potentially life-threatening episodes of asthma or COPD. SYMBICORT has not been studied in patients with acutely deteriorating asthma or COPD. The initiation of SYMBICORT in this setting is not appropriate.

SYMBICORT should not be used for the relief of acute symptoms, i.e., as rescue therapy for the treatment of acute episodes of bronchospasm. An inhaled, short-acting beta₂agonist, not SYMBICORT, should be used to relieve acute symptoms such as shortness of breath. When prescribing SYMBICORT, the physician must also provide the patient with an inhaled, short-acting beta₂-agonist (e.g., albuterol) for treatment of acute symptoms, despite regular twice-daily (morning and evening) use of SYMBICORT.

Financial/Insurance Coverage

Out-of-pocket costs associated with Symbicort can be \$200-400/month for some

Frequent 'as-needed' use can result in earlier refills, which is often not covered by insurance

Patient preference

Strong patient preference for inhaler devices, nebulizer devices

Redefining Reversibility 10% of predicted

Regulatory Roadblocks Options for SMART are limited

Rapid Relief
Patient preferences for reliever therapies

Respiratory Responsibility The global impact of treatment decisions

Summary and Questions

Rapid Relief Patient Preferences for Reliever Therapy

Patient-Activated Reliever-Triggered ICS (PARTICS) Alternative reliever strategy for moderate-to-severe asthma

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Reliever-Triggered Inhaled Glucocorticoid in Black and Latinx Adults with Asthma

E. Israel, J.-C. Cardet, J.K. Carroll, A.L. Fuhlbrigge, L. She, F.W. Rockhold, N.E. Maher, M. Fagan, V.E. Forth, B.P. Yawn, P. Arias Hernandez, J.M. Kruse, B.K. Manning, J. Rodriguez-Louis, J.B. Shields, B. Ericson, A.D. Colon-Moya, S. Madison, T. Coyne-Beasley, G.M. Hammer, B.M. Kaplan, C.S. Rand, J. Robles, O. Thompson, M.E. Wechsler, J.P. Wisnivesky, M.D. McKee, S.P. Jariwala, E. Jerschow, P.J. Busse, D.C. Kaelber, S. Nazario, M.L. Herrandez, A.J. Apter, K.-L. Chang, V. Pinto-Plata, P.M. Stranges, L.P. Hurley, J. Trevor, T.B. Casale, G. Chupp, I.L. Riley, K. Shenoy, M. Pasarica, R.A. Calderon-Candelario, H. Tapp, A. Baydur, and W.D. Pace

Patient preference for nebulizers Incompatible with GINA recommendations

PREPARE Cohort

- 67% of PREPARE participants reported using a nebulizer as a reliever device
- 45% report using nebulizer weekly
- Greater number of co-morbid conditions
- Utilize acute health care services (ED, hospitalization, exacerbation) more frequently (~50% vs. ~25%)

GINA

- ICS/LABA reliever for all asthma severity
- Specifically recommends against SABA in favor of LABA as bronchodilator
- Patient preference for nebulizer device is unaddressed

Apter 2022 JACI-IP

Nebulizer use is common Significant associated risk

TriNetX Database

- 6M adults with asthma
- 25% nebulizer use overall
- 37% nebulizer use for medium/high dose ICS
- Propensity-matched cohort of 400k
- 4-year follow-up period

- All-Cause Mortality
 - HR 1.98 (95% CI 1.91 2.05)
- Severe Asthma Exacerbation
 - HR 1.29 (95% CI 1.28 1.29)

Salciccioli, unpublished

Formoterol superior to SABA for FEV1 change At peak effect (~60min)

Figure 1 Time course of change in FEV, (mean (SE) in 14 patients) after inhalation of placebo $(\Box - - - - \Box)$, salbutamol $(\bigcirc - - \bigcirc)$, 12 µg formoterol $(\blacksquare - - \blacksquare)$, 24 µg formoterol $(\blacksquare - - \blacksquare)$, and 48 µg formoterol $(\blacksquare - - \blacksquare)$.

Table 2 Mean (SE) baseline and maximum values of FEV, and sGaw with different treatments

			C		Form	Formoterol (µg)							
	Placet	Salbut Placebo 200 μg		12		24		48					
				F	EV, (l)			<u></u>					
Baseline	2.00	(0.20)	2.11	(0.24)	1.98	(0.24)	2.05	(0.24)	1.96	(0.20)			
Maximum	2.36	(0.22)	3.03	(0.26)	3.05	(0.29)	3.16	(0.28)	3.22	(0·27)			
				sGaw	(cm H ₂ O.s)							
Baseline	0.031	(0.003)	0.041	(0.005)	0-041	(0.006)	0.038	(0.006)	0.035	(0.003)			
Maximum	0.066	(0.008	0.130	(0.016)	0.133	(0.018)	0.121	(0.022)	0.167	(0.021)			

Derom 1992 Thorax

Short-term effects favor SABA FEV1 increase 100mL over 30min

Figure 2 Time course of FEV₁ for budesonide/formoterol and salbutamol.

Table 2 Secondary analyses of FEV1 comparison at all time points							
Time (minutes)	Budesonide/formoterol minus Salbutamol Difference (95% CI)	P value (vs 0)					
1	-0.11 (-0.16 to -0.05)	<0.001					
2	-0.12 (-0.17 to -0.06)	<0.001					
3	-0.11 (-0.17 to -0.05)	<0.001					
5	-0.095 (-0.15 to -0.07)	0.001					
10	-0.11 (-0.17 to -0.06)	<0.001					
15	-0.07 (-0.12 to -0.01)	0.02					
30	-0.08 (-0.14 to -0.03)	0.004					
Averaged over all times	-0.10 (-0.12 to -0.08)	<0.001					

Kearns 2023 Thorax

Combination ICS-SABA 'Anti-Inflammatory Reliever'

- Hazard ratio for probability of severe exacerbations was 0.73 (95% CI 0.61–0.88) with higher dose of as-needed albuterol-budesonide compared with as-needed albuterol
- Most benefit seen in Step 3

Selecting the optimal reliever therapy 'Anti-Inflammatory Reliever'

- Anti-inflammatory (ICS-containing) reliever should be preferred over SABA-only therapy
- Add-on ICS with SABA effective in moderate-tosevere asthma (PARTICS)
- GINA 2022: 'Providing access to antiinflammatory relievers at affordable prices for all patients in all countries, whether MDI or DPI, is both important and urgent'

Redefining Reversibility 10% of predicted

Regulatory Roadblocks Options for SMART are limited

Rapid Relief Anti-inflammatory reliever

Respiratory Responsibility The global impact of treatment decisions

Summary and Questions

Respiratory Responsibility Global impact of treatment decisions

Inhaler devices and the environment Metered dose vs. dry powder

BTS/SIGN 2019

Poor asthma control (increased SABA use) is associated with GHG

- MDIs contribute <u>~3.5% of the carbon footprint</u> of the National Health Service
 - Asthma in UK accounts for 750,000 tCO2/year

UK NICE: 'prescribers <u>be aware of the global-</u> <u>warming potential of different inhalers and to use</u> inhalers with lower global-warming potential where equally effective'

Your inhaler saves lives, but its puffs hurt the planet

wbur

Inhaler selection Weighing the environmental effect

Asthma Control

Poor asthma control is associated with increased SABA use and <u>excess</u> GHG.

>303K tCO2/yr

Wilkinson 2023 Thorax

Asthma Exacerbation

Exacerbations are associated with significant CO2 effects (regardless of MDI v. DPI).

185 tCO2/AEX

Kponee 2022 JME

Inhaler Transitions Non-medical transitions (insurance, generic, etc.) associated with loss of asthma control and exacerbation.

47% AEX rate

Gilbert 2021 *Pulm Ther* McCarthy 2022 *J Pharm Prac*

Inhaler selection On balance

- 'Green Guilt' may limit adherence
- Restricted production of MDI may adversely affect access to inhaler therapies in LMICs
- Consider DPI for <u>initiation</u> of therapy
- <u>Transition</u> with caution

Redefining Reversibility 10% of predicted

Regulatory Roadblocks Options for SMART are limited

Rapid Relief Anti-inflammatory reliever

Respiratory Responsibility Careful transitions

Summary and Questions

Questions?

Justin D Salciccioli jsalciccioli@bwh.harvard.edu