Managing Severe Asthma in Children

Daniel J. Jackson, MD
Professor of Pediatrics
University of Wisconsin SMPH

March 21, 2025

Disclosures

- Employment
 - University of Wisconsin SMPH
- Financial Interests
 - Consultant: Areteia,
 GlaxoSmithKline, Sanofi,
 Regeneron, Apogee, Abbvie
 - DSMB: AstraZeneca,Upstream Bio

- Research Interests
 - NIH: NHLBI, NIAID
 - Regeneron
 - Vifor pharma

Why are Asthma Exacerbations Important?

- Major factor in morbidity and mortality¹
- Significant contributor to cost²
 - –Emergency department care
 - –Hospitalization
 - –Lost time from work/school
- •Risk for progressive loss of lung function^{3,4}
- "Exacerbation-prone" patients^{1,5–6}
 - Exacerbations not prevented by ICS/LABA
 - -More severe disease
 - –"Destabilized" asthma

- 1. Dougherty, Clinical Exp Allergy 2009
- 2. Rodrigo, Chest 2004
- 3. O'Byrne, AJRCCM 2009
- 4. O'Brian, JACI 2012
- 5. Thomson & Chouduri, BMC Pulm Med 2008
- 6. Koga, Respiratory Med 2006

OCS Associated with Increased Risk of Fracture, GI bleed, Sepsis & PNA

*Increased fracture risk in the year following OCS RR 1.17 (p=0.01)

Gray et al JAMA Peds 2018

Evidence of Impaired Lung Function Growth & Early Decline in Childhood Asthma

Factors Associated with Impaired Lung Growth in CAMP

- Lower baseline lung function
- Increased BDR
- Increased airway responsiveness to MCh
- Male sex (OR 8)
- Vitamin D <30
- # of prednisone courses

**Randomized Treatment (ICS, nedocromil or placebo) NOT associated with lung growth outcomes

Step-Up Approaches to Attempt to Prevent Asthma Exacerbations

Need for Improved Reliever Strategies

- Adherence to all controller regimens is suboptimal
- All patients with asthma need a reliever
- Inhaled SABA has been 1st line treatment for 50 years
- SABAs do not treat inflammation and do not prevent exacerbations
- Greater SABA use associated with annual systemic corticosteroid exposure (Lugogo et al. ATS 2021 Poster; Quint et al. SABINA + JACI-IP 2022)

MART with ICS/Formoterol

Does ICS/formoterol for Maintenance & Relief Reduce Exacerbations?

2760 patients 4-80 years old Not well controlled during run-in

Randomization Groups	Maintenance	Rescue
Budesonide + SABA	Budesonide 320 mcg 2x daily*	Terbutaline
ICS/LABA maintenance	Budesonide/Formoterol 80/4.5 2x daily*	Terbutaline
ICS/LABA maintenance + reliever	Budesonide/Formoterol 80/4.5 2x daily*	Budesonide/Formoterol 80/4.5

*1x daily in 4-11 y/o

ICS/LABA for Maintenance & Relief Reduces Severe Exacerbations

Adolescents: ICS/formoterol for Maintenance & Relief Significantly Reduced Exacerbations

Does ICS/LABA for Maintenance & Relief Reduce Exacerbations in Children?

341 4-11 year old children
*Not well controlled during run-in on 200-500 mcg ICS per day

Randomization Groups	Maintenance	Rescue
Budesonide + SABA	Budesonide 320 mcg 1x daily	Terbutaline
ICS/LABA maintenance	Budesonide/Formoterol 80/4.5 1x daily	Terbutaline
ICS/LABA maintenance + reliever	Budesonide/Formoterol 80/4.5 1x daily	Budesonide/Formoterol 80/4.5

Children: ICS/formoterol for Maintenance & Relief Significantly Reduced Exacerbations

Single Inhaler Therapy - MART Practical Considerations

- Adherence & Perception of symptoms
- Maintenance & Reliever
 - No FDA approval [package insert and online information not consistent with this approach]
 - Insurance coverage [potentially more than 1 inhaler per month & specific inhaler]
 - Mometasone/formoterol not studied as of yet
 - Side effects at higher doses?
 - Has not been studied in severe disease in children/adolescents

Can Targeted Therapy with Biologics Improve Outcomes in Childhood Asthma?

Biologics Currently with an FDA Indication for Asthma?

Product	Target	Asthma FDA Indication	Other Indications
Omalizumab	lgE	6 years & up	CIU, CRSw/NP, FA*
Mepolizumab	IL-5	6 years & up	EGPA, HES, CRSw/NP
Benralizumab	IL-5R	6 years & up	EGPA
Reslizumab	IL-5	18 years & up	
Dupilumab	IL-4Rα	6 years & up	AD#, CRSw/NP, EoE, COPD, PN
Tezepelumab	TSLP	12 years & up	

Selecting Biologics in Children & Adolescents

Targeting IgE: Omalizumab

Omalizumab Reduces Severe Exacerbations in Children

Busse et al, NEJM 2011

The Effect of Sensitization and Exposure on Omalizumab Efficacy

Omalizumab & Disease Severity: Composite Asthma Severity Index (CASI)

Omalizumab reduced disease severity as measured by CASI

<u>Preventative Omalizumab or Step-up Therapy for Severe Fall Exacerbations (PROSE)</u>

Can a pre-seasonal intervention with omalizumab, or a boost in ICS, <u>initiated just 4-6 weeks before a return</u> <u>to school</u>, prevent the annual fall spike in asthma exacerbations among inner-city children with persistent allergic asthma and on guideline care?

Omalizumab reduced seasonal exacerbations of asthma

*ICS Boost *did not* reduce the exacerbation rate in PROSE

The Benefit was Primarily Observed in Participants with Severe Disease

^{*}ICS Boost *did not* reduce the exacerbation rate in PROSE

Are T2 Biomarkers Predictive of Omalizumab Response?

Biomarker	Exacerbation Benefit Odds Ratio	P-value	Interaction p-value	
FeNO				
<20	1.15 (0.66-1.98)	0.63	0.05	
>/= 20	2.57 (1.46-4.54)	<0.01	0.05	
Blood Eos				
<2%	0.56 (0.24-1.30)	0.18	<0.01	
>/= 2%	2.13 (1.50-3.02)	<0.01		

CA Sorkness et al, JACI: In Practice, 2013

What are the Mechanisms of Omalizumab Efficacy?

- Fewer Fall exacerbations
 - OR 0.48 (0.25-0.92)
- Fewer RV detection and illnesses
 - RR 0.68 (0.52-0.88)
- Enhanced IFN-α secretion ex vivo

Teach S, et al. JACI 2015 Esquivel A et al AJRCCM 2017 Gill MA et al. JACI 2018

 ~50% of exacerbations persisted despite omalizumab highlighting the need to identify pathways that lead to persistent asthma exacerbations

Targeting T2 Inflammation with Anti-IL4/13 Strategies

VOYAGE: Dupilumab in 6-11 y/o children with Moderate-Severe asthma

Dupilumab is a monoclonal antibody directed against the IL-4 receptor α subunit that inhibits both IL-4 and IL-13

	Type 2 Population		
	PBO (N=114)	Dupi (N=236)	
Age (year), mean (SD)	9.0 (1.6)	8.9 (1.6)	
Female, n (%)	36 (31.6%)	84 (35.6%)	
Medium ICS, n (%)	64 (56.1%)	131 (55.5%)	
High ICS, n (%)	50 (43.9%)	102 (43.2%)	
Severe exacerbations/year, mean (SD)	2.18 (1.55)	2.61 (2.58)	
Pre-BD FEV ₁ pp, mean (SD)	78.36 (14.51)	77.66 (14.38)	
FEV ₁ reversibility, mean (SD)	18.34 (14.89)	23.47 (21.00)	

Bacharier LB et al. N Engl J Med 2021;385:2230-2240

VOYAGE: Dupilumab Reduced Exacerbations

^aType 2 defined as EOS ≥150 cells/microliter or FeNO ≥20 ppb. EOS, eosinophils; FeNO, fractional exhaled nitric oxide; ITT, intent to treat; PBO, placebo; ppb, parts per billion.

VOYAGE: Impact of Dupilumab on Lung Function

Blood Eosinophils & FeNO Predict Response to Dupilumab in Children

Targeting Eosinophils

MUPPITS-2: <u>Mechanisms Underlying Asthma Exacerbations</u> <u>Prevented and Persistent with Immune-Based Therapy: A</u> <u>Systems Approach Phase 2</u>

Mepolizumab (anti-IL5) SQ q4 weeks + Guidelines based management x 52 wks

Study Participants

6-17 year old urban children, difficult to control, ≥2 severe exacerbations in the past year & eos ≥150 cells/µl

*Primary
Outcome
Rate of
Asthma
Exacerbations

Integrated Ancillary/Mechanistic Studies

- 1) Airway & Blood Transcriptomics at baseline, 3 months & during colds/exacerbations (Matt Altman-Benaroya)
- 2) Baseline Eosinophil Characterization & Response to Therapy (Justin Schwartz/Patty Fulkerson)
- 3) Sputum Cytof (Geoff Chupp & Ruth Montgomery-Yale)

Primary Outcome: Rate of Asthma Exacerbations

Mechanistic Research Question

What mechanisms underlie exacerbations prevented with & persistent despite mepolizumab?

Baseline Airway Gene Expression Differentially Associates with Exacerbation Risk

Can a combination of modules better predict response to therapy?

Model based recursive partitioning

- Flexible decision tree classifier / machine learning method
 - Allows for negative binomial distribution of Y variable (exacerbations)
 - Interaction of treatment and covariates

MBRP Selected an Eosinophil & Epithelial Module as Optimal Predictors of Response

Low - Eosinophil eicosanoid

Placebo

Mepolizumab

Mepolizumab

Prediction of Treatment Response

High - Eosinophil eicosanoid

Placebo

Mepolizumab

Placebo

Can a gene-based analysis better predict response to therapy?

Lasso Selection of Genes Followed by MBRP

Lasso selected genes

3-Gene Prediction of Treatment Response

High – SWAP70 (eosinophil)

High – *TCIRG1* (neutrophil) Low - *SWAP70* (eosinophil) **High** – *ACER2* (epithelium) **Low** – *TCIRG1* (neutrophil) **Low** - *SWAP70* (eosinophil) Low – ACER2 (epithelium) Low – TCIRG1 (neutrophil)

Targeting TSLP Beneficial in Both T2 High and T2 Low Asthma?

Tezepelumab in Adults & Adolescents with Severe, Uncontrolled Asthma

- 1061 participants 12+ y/o with severe asthma
 - Primary Outcome = rate of exacerbations
 - Secondary Outcomes FEV1, ACQ-6, AQLQ, and ASD

Tezepelumab Reduced Exacerbations

Tezepelumab Improved all Secondary Outcomes

- Also significantly improved:
 - ACQ-6
 - AQLQ
 - ASD

Menzies-Gow et al. NEJM 2021

Conclusions

- Patient characteristics and biomarkers can identify those most likely to benefit from biologic therapy for severe asthma in children
 - Omalizumab, mepolizumab, and dupilumab have RCT data currently available in 6-11 y/o children
 - Comparative studies are not available
 - Opportunity for shared decision-making including dosing frequency, co-morbid conditions, location of injections, etc.
 - -Omic approaches hold tremendous promise to better select therapies for children with severe, exacerbation-prone asthma

Acknowledgments

ClinicalTrials.gov: NCT03292588

- ICAC Site Investigators
- Rebecca Gruchalla & Michelle Gill (UT Southwestern)
- Andrew Liu (Children's Hosp Colorado)
- G. O'Connor (Boston U)
- Jackie Pongracic (Lurie Children's Hosp Chicago)
- Carolyn Kercsmar & Neeru
 Hershey (Cincinnati Children's Hosp)
- Edward Zoratti & Chris Johnson (Henry Ford Health)
- Stephen Teach (Children's Natl)
- Meyer Kattan (Columbia U)
- Len Bacharier, Kathy Rivera, Jeff Stokes (Wash U)

- U. Wisconsin
 - William Busse
 - Jim Gern
 - Christine Sorkness
 - Kellie Hernandez
- Benaroya Research Institute/U. of Wash
 - Matt Altman
 - Kim Dill-McFarland
 - Max Segnitz
 - Scott Presnell
 - Kimm O'Brien
 - Vivian Gersuk

- NIAID
 - Peter Gergen
 - Lisa Gagalis
 - Patrice Becker
 - Alkis Togias
 - Gang Dong
 - Lyudmila Lyakh
- Rho, Inc.
 - Agustin Calatroni
 - Stephanie Wellford
 - Cindy Visness

*Study participants & their families

*ICAC & CAUSE Coordinators & Lab staff

Funded by:

NIAID grants: UM1 Al114271, UM2Al117870 and UM1Al60040

An unrestricted grant from GlaxoSmithKline